
2. Liu, Xiaoyan; Yan, Wei; Stenby, Erling H.; Thomann, Esben, “Release of Crude Oil from Silica and Carbonate Surfaces: On the Alternation of Surface and Molecular Forces by High- and Low-Salinity Aqueous Salt Solutions”, ENERGY & FUELS Volume: 30 Issue: 5 Pages: 3986-3993 Published: MAY 2016

3. Regueira, Teresa; Yan, Wei; Stenby, Erling H, “Densities of the Binary Systems n-Hexane plus n-Decane and n-Hexane plus n-Hexadecane Up to 60 MPa and 463 K”, JOURNAL OF CHEMICAL AND ENGINEERING DATA Volume: 60 Issue: 12 Pages: 3631-3645 Published: DEC 2015


7. Yan, Wei; Michelsen, Michael L.; Stenby, Erling H., “Negative Flash for Calculating the Intersecting Key Tie lines in Multicomponent Gas Injection”, INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH Volume: 53 Issue: 36 Pages: 14094-14112 Published: SEP 10 2014

8. Yuan, H.; Zhang, X.; Shapiro, A. A.; et al., ”Crossflow and Water Banks in Viscous Dominant Regimes of Waterflooding”, PETROLEUM SCIENCE AND TECHNOLOGY Volume: 32 Issue: 10 Pages: 1227-1232 Published: MAY 19 2014


11. Yan, Wei; Belkadi, Abdelkrim; Michelsen, Michael L.; Stenby, Erling H., ”Study on the Application of the Tie-Line-Table-Look-Up-Based Methods to Flash Calculations in Compositional Simulations”, SPE JOURNAL Volume: 18 Issue: 5 Pages: 932-942, 2013


17. Riaz, Muhammad; Yussuf, Mustafe A.; Kontogeorgis, Georgios M.; Stenby, Erling H.; Yan, Wei; Solbraa, Even, “Distribution of MEG and methanol in well-defined hydrocarbon and water systems: Experimental measurement and modeling using the CPA EoS”, FLUID PHASE EQUILIBRIA Volume: 337 Pages: 298-310, 2013


23. Fritt-Rasmussen, Janne; Brandvik, Per Johan; Villumsen, Arne; Stenby, Erling H., “Comparing ignitability for in situ burning of oil spills for an asphaltenic, a waxy and a light crude oil as a function of weathering conditions under arctic conditions”, COLD REGIONS SCIENCE AND TECHNOLOGY Volume: 72 Pages: 1-6, 2012


32. Volcker Carsten; Jorgensen John Bagterp; Thomsen Per Grove; et al. ” NMPC for Oil Reservoir Production Optimization”, Computer-Aided Chemical Engineering Volume: 29 Pages: 1849-1853, 2011


38. Fosbol PL, Thomsen K, Stenby EH, “Review and recommended thermodynamic properties of FeCO3”, CORROSION ENGINEERING SCIENCE AND TECHNOLOGY, 45 (2) 115-135, 2010


43. Tybjerg PCV, Kontogeorgis GM, Michelsen ML, et al., “Phase equilibria modeling of methanol-containing systems with the CPA and sPC-SAFT equations of state”, FLUID PHASE EQUILIBRIA, 288 (1-2) 128-138, 2010


80. von Solms, N, Rubin, A, Andersen, SI, and Stenby, EH, "Directs measurement of high temperature/high pressure solubility of methane and carbon dioxide in polyamide (PA-11) using a high-pressure microbalance, INTERNATIONAL JOURNAL OF THERMOPHYSICS, 26 (1), 115-125, 2005


83. Heidemann, RA, Madsen, J, Stenby, EH, and Andersen, SI, "Wax precipitation modeled with many mixed solid phases”, AICHE JOURNAL, 51 (1), 298-308, 2005

84. Quinones-Cisneros, SE, Dalberg, A, and Stenby, EH, “PVT characterization and viscosity modeling and prediction of crude oils”, PETROLEUM SCIENCE AND TECHNOLOGY, 22 (9-10), 1309-1325, 2004


92. Sergio Quinones-Cisneros, Claus Kjær Zeberg-Mikkelsen, and Erling Halfdan Stenby: Friction theory prediction of crude oil viscosity at reservoir conditions based on dead oil properties, Fluid Phase Equilibria, 212 (1), 233-243, 2003


106. Canet, X, Dauge, P, Baylaucq, A, Boned, C, Zeberg-Mikkelsen, CK, Quinones-Cisneros, SE, and Stenby, EH, “Density and viscosity of the 1-methylnaphthalene+2,2,4,4,6,8,8-heptamethylene nonane system from 293.15 to 353.15 K at pressures up to 100 MPa”, INTERNATIONAL JOURNAL OF THERMOPHYSICS, 22 (6), 1669-1689, 2001


134. Claus Kjær Zeberg-Mikkelsen and Erling Halfdan Stenby: Predicting the Melting Points and the Heats of Fusion of Saturated Triglycerides by a Group Contribution Method, Fluid Phase Equilibria, 162 (), 7-17, 1999


146. Alexander Shapiro and Erling Halfdan Stenby: Kelvin equation for a non-ideal multicomponent mixture, Fluid Phase Equilibria, 134 (), 87-101, 1997


171. Peng Wang and Erling Halfdan Stenby: Compositional Simulation of Reservoir Performance by a Reduced Thermodynamic Model, Computers and Chemical Engineering, 18 (2), 75-81, 1994


